Abstract
In this study, we propose low power consumption, all-in-one type electrochromic devices (ECDs) for effective heat shutters. Considering diffusion-controlled device operation, polymeric viologens (poly-viologens) are synthesized to lower the diffusivity of EC chromophores and to minimize self-bleaching. In comparison with devices based on mono-viologens corresponding to the monomer of poly-viologens, poly-viologen-containing ECDs exhibit advantages of lower coloration voltage (ca,-0.55 V) and higher coloration/bleaching cyclic stability (>1500 cycles). In particular, poly-viologen ECDs show remarkably reduced self-bleaching as designed, resulting in extremely low power consumption (â8.3 μW/cm2) to maintain the colored state. Moreover, we successfully demonstrate solar heat shutters that suppress the increment of indoor temperature by taking the advantage of low-power operation and near-IR absorption of the colored poly-viologen-based ECDs. Overall, these results imply that the control of the diffusivity of EC chromophores is an effective methodology for achieving single-layered, low-power electrochemical heat shutters that can save indoor cooling energy when applied as smart windows for buildings or vehicles.
Original language | English |
---|---|
Pages (from-to) | 30635-30642 |
Number of pages | 8 |
Journal | ACS applied materials & interfaces |
Volume | 12 |
Issue number | 27 |
DOIs | |
State | Published - 8 Jul 2020 |
Keywords
- diffusion-controlled electrochemical devices
- electrochromism
- heat shutters
- ion gels
- polymer viologens