Abstract
An ultrahigh power output from a triboelectric nanogenerator (TENG) with a serrated electrode in a low-frequency contact-separation mode which is able to directly drive high voltage-operating devices without the need for an external power supply is demonstrated. When a serrated electrode-based TENG (SE-TENG) is driven, the microstructurally serrated electrode creates a spark discharge in the gap between the serrated electrode and a wire, resulting in tremendously boosted triboelectric power output. Based on the spark discharge phenomenon, a boost adaptor is designed to secondarily boost the triboelectric power output performance, and consequently an ultrahigh triboelectric output voltage of 5 kV and current density of 2 A m−2 are achieved. The boost adaptor concept can be applied to any typical TENG for achieving higher power-generating performance. Finally, two high voltage applications, a Crookes tube and plasma generation, are demonstrated using the SE-TENG and boost adaptor without any external power supply equipment. The ultrahigh power-generating SE-TENG based on the spark discharge phenomenon occurring in the unique electrode structure has considerable potential to operate high voltage applications directly in harsh environments where electricity cannot be supplied.
| Original language | English |
|---|---|
| Article number | 2002312 |
| Journal | Advanced Energy Materials |
| Volume | 10 |
| Issue number | 44 |
| DOIs | |
| State | Published - 24 Nov 2020 |
Keywords
- self-powered high voltage applications
- serrated electrodes
- spark discharge
- triboelectric nanogenerators
- ultrahigh power output