Abstract
Carbon nanotubes (CNTs) were produced from waste face masks and non-recyclable mixed plastic waste via pyrolysis-chemical vapor deposition (CVD). The yield and properties of the prepared CNTs depended on the feedstock and catalyst used. CoMo/MgO and FeMo/MgO were proven suitable catalysts for producing few-walled and multi-walled CNTs, respectively, regardless of the feedstock. Both mask waste and the FeMo/MgO catalyst led to excellent carbon yield (516.7 wt%) and CNT purity (97.9 wt%). The resulting CNTs were mixed with LiNi0.8Co0.1Mn0.1O2 (NCM811) active material and poly(vinylidene fluoride) binder to fabricate cathodes. Electrochemical measurements showed that CNTs grown on the FeMo/MgO catalyst outperformed commercial carbon black and CNTs. C1-C3 hydrocarbons and H2 present in the plastic pyrolysis gas can be directly used for CNT production without gas separation or purification, therefore, the proposed pyrolysis-CVD process is favorable for efficient plastic upcycling and advanced battery applications.
Original language | English |
---|---|
Pages (from-to) | 8007-8018 |
Number of pages | 12 |
Journal | Green Chemistry |
Volume | 25 |
Issue number | 20 |
DOIs | |
State | Published - 11 Sep 2023 |