TY - GEN
T1 - Weak-to-Strong Compositional Learning from Generative Models for Language-Based Object Detection
AU - Park, Kwanyong
AU - Saito, Kuniaki
AU - Kim, Donghyun
N1 - Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
PY - 2025
Y1 - 2025
N2 - Vision-language (VL) models often exhibit a limited understanding of complex expressions of visual objects (e.g., attributes, shapes, and their relations), given complex and diverse language queries. Traditional approaches attempt to improve VL models using hard negative synthetic text, but their effectiveness is limited. In this paper, we harness the exceptional compositional understanding capabilities of generative foundational models. We introduce a novel method for structured synthetic data generation aimed at enhancing the compositional understanding of VL models in language-based object detection. Our framework generates densely paired positive and negative triplets (image, text descriptions, and bounding boxes) in both image and text domains. By leveraging these synthetic triplets, we transform ‘weaker’ VL models into ‘stronger’ models in terms of compositional understanding, a process we call “Weak-to-Strong Compositional Learning” (WSCL). To achieve this, we propose a new compositional contrastive learning formulation that discovers semantics and structures in complex descriptions from synthetic triplets. As a result, VL models trained with our synthetic data generation exhibit a significant performance boost in the Omnilabel benchmark by up to +5AP and the D3 benchmark by +6.9AP upon existing baselines.
AB - Vision-language (VL) models often exhibit a limited understanding of complex expressions of visual objects (e.g., attributes, shapes, and their relations), given complex and diverse language queries. Traditional approaches attempt to improve VL models using hard negative synthetic text, but their effectiveness is limited. In this paper, we harness the exceptional compositional understanding capabilities of generative foundational models. We introduce a novel method for structured synthetic data generation aimed at enhancing the compositional understanding of VL models in language-based object detection. Our framework generates densely paired positive and negative triplets (image, text descriptions, and bounding boxes) in both image and text domains. By leveraging these synthetic triplets, we transform ‘weaker’ VL models into ‘stronger’ models in terms of compositional understanding, a process we call “Weak-to-Strong Compositional Learning” (WSCL). To achieve this, we propose a new compositional contrastive learning formulation that discovers semantics and structures in complex descriptions from synthetic triplets. As a result, VL models trained with our synthetic data generation exhibit a significant performance boost in the Omnilabel benchmark by up to +5AP and the D3 benchmark by +6.9AP upon existing baselines.
KW - Compositionality
KW - Language-based Object Detection
UR - http://www.scopus.com/inward/record.url?scp=85208578475&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-73337-6_1
DO - 10.1007/978-3-031-73337-6_1
M3 - Conference contribution
AN - SCOPUS:85208578475
SN - 9783031733369
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 1
EP - 19
BT - Computer Vision – ECCV 2024 - 18th European Conference, Proceedings
A2 - Leonardis, Aleš
A2 - Ricci, Elisa
A2 - Roth, Stefan
A2 - Russakovsky, Olga
A2 - Sattler, Torsten
A2 - Varol, Gül
PB - Springer Science and Business Media Deutschland GmbH
T2 - 18th European Conference on Computer Vision, ECCV 2024
Y2 - 29 September 2024 through 4 October 2024
ER -