TY - JOUR
T1 - Zigzag Strip Bundle Realization of B(Λ0) over Uq(Cn(1))
AU - Kim, Jeong Ah
AU - Shin, Dong Uy
N1 - Publisher Copyright:
© 2016, Springer Science+Business Media Dordrecht.
PY - 2016/12/1
Y1 - 2016/12/1
N2 - Zigzag strip bundles are new combinatorial models realizing the crystals B(∞) for the quantum affine algebras Uq(g) , where (g)=Bn(1),Dn(1), Dn+1(2), Cn(1), A2n−1(2), A2n(2). Recently, these models were used to the realization of highest weight crystals except for the highest weight crystal B(Λ0) over the quantum affine algebra Uq(Cn(1)). In this paper, we construct the highest weight crystal B(Λ0) over the quantum affine algebra Uq(Cn(1)) using zigzag strip bundles, which completes the realizations of all highest weight crystals over Uq(g).
AB - Zigzag strip bundles are new combinatorial models realizing the crystals B(∞) for the quantum affine algebras Uq(g) , where (g)=Bn(1),Dn(1), Dn+1(2), Cn(1), A2n−1(2), A2n(2). Recently, these models were used to the realization of highest weight crystals except for the highest weight crystal B(Λ0) over the quantum affine algebra Uq(Cn(1)). In this paper, we construct the highest weight crystal B(Λ0) over the quantum affine algebra Uq(Cn(1)) using zigzag strip bundles, which completes the realizations of all highest weight crystals over Uq(g).
KW - Crystals
KW - Kashiwara embeddings
KW - Nakajima monomials
KW - Zigzag strip bundles
UR - http://www.scopus.com/inward/record.url?scp=84973667582&partnerID=8YFLogxK
U2 - 10.1007/s10468-016-9624-5
DO - 10.1007/s10468-016-9624-5
M3 - Article
AN - SCOPUS:84973667582
SN - 1386-923X
VL - 19
SP - 1423
EP - 1436
JO - Algebras and Representation Theory
JF - Algebras and Representation Theory
IS - 6
ER -