Zigzag strip bundles and highest weight crystals

Jeong Ah Kim, Dong Uy Shin

Research output: Contribution to journalArticlepeer-review

6 Scopus citations


Zigzag strip bundles are new combinatorial models realizing the crystals B( ∞) for the quantum affine algebras Uq(g), where g=Bn(1),Dn(1),Dn+1(2),Cn(1),A2n-1(2),A2n(2). In this paper, we give new realizations of the crystal bases B(λ) for the irreducible highest weight modules V(λ) over quantum affine algebras Uq(g) using zigzag strip bundles. Further, we discuss the connection between zigzag strip bundle realization, Nakajima monomial realization, and polyhedral realization of the crystals B(λ).

Original languageEnglish
Pages (from-to)15-50
Number of pages36
JournalJournal of Algebra
StatePublished - 15 Aug 2014


  • Crystals
  • Kashiwara embeddings
  • Nakajima monomials
  • Zigzag strip bundles


Dive into the research topics of 'Zigzag strip bundles and highest weight crystals'. Together they form a unique fingerprint.

Cite this